Part Number Hot Search : 
HZK9L MX23L BSS214N SA156 TDA1037 SK1640C 2B5UM 1N4103
Product Description
Full Text Search
 

To Download STR736FV0T6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STR73xFxx
ARM7TDMITM 32-bit MCU with Flash, 3x CAN, 4 UARTs, 20 timers, ADC, 12 comm. interfaces
Features
Core - ARM7TDMI 32-bit RISC CPU - 32 MIPS @ 36 MHz Memories - Up to 256 Kbytes Flash program memory (10,000 cycles endurance, data retention 20 years @ 85 C) - 16 Kbytes RAM Clock, reset and supply management - 4.5 - 5.5 V application supply and I/Os - Embedded 1.8 V regulator for core supply - Embedded oscillator running from external 4-8 MHz crystal or ceramic resonator - Up to 36 MHz CPU frequency with internal PLL - 32 kHz or 2 MHz internal RC oscillator, software configurable for fast startup and backup clock - Real-time clock for clock-calendar function - Wake-up timer driven by internal RC for wake-up from STOP mode - 5 power saving modes: SLOW, WFI, LPWFI, STOP and HALT modes Nested interrupt controller - Fast interrupt handling with multiple vectors - 64 maskable IRQs with 64 vectors and 16 priority levels - 2 maskable FIQ sources - 16 external interrupts, up to 32 wake-up lines Up to 112 I/O ports - 72/112 multifunctional bidirectional I/Os
TQFP100 14 x 14 TQFP144 20 x 20 LFBGA144 10 x 10 x 1.7

DMA - 4 DMA controllers with 4 channels each Timers - 16-bit watchdog timer (WDG) - 6/10 16-bit timers (TIM) each with: 2 input captures, 2 output compares, PWM and pulse counter modes - 6 16-bit PWM modules (PWM) - 3 16-bit timebase timers with 8-bit prescalers 12 communications interfaces - 2 I2C interfaces - 4 UART asynchronous serial interfaces - 3 BSPI synchronous serial interfaces - Up to 3 CAN interfaces (2.0B Active) 10-bit A/D converter - 12/16 channels - Conversion time: min. 3 s, range: 0 to 5V Development tools support - JTAG interface Device summary
Part number STR730FZ1, STR730FZ2, STR731FV0, STR731FV1, STR731FV2, STR735FZ1, STR735FZ2, STR736FV0, STR736FV1, STR736FV2

Table 1.
Reference
STR73xFxx
June 2008
Rev 7
1/52
www.st.com 52
Contents
STR73xFxx
Contents
1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 3.2 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 3.2.2 3.2.3 STR730F/STR735F (TQFP144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 STR730F/STR735F (LFBGA144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 STR731F/STR736F (TQFP100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 4.3
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2/52
STR73xFxx
Contents
6 7
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.1 7.2 Low power wait for interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 PLL free running mode at high temperature . . . . . . . . . . . . . . . . . . . . . . 50
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3/52
Scope
STR73xFxx
1
Scope
This datasheet provides the STR73x ordering information, mechanical and electrical device characteristics. For complete information on the STR73xF microcontroller memory, registers and peripherals. please refer to the STR73x reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash programming reference manual. For information on the ARM7TDMI core please refer to the ARM7TDMI technical reference manual.
1.1
Description
ARM core with embedded Flash & RAM STR73xF family combines the high performance ARM7TDMITM CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage Flash memory and high-speed RAM. The STR73xF family has an embedded ARM core and is therefore compatible with all ARM tools and software. Extensive tools support STMicroelectronics' 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST's ARM core-based MCUs. The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available. For more information, please refer to ST MCU site http://www.st.com/mcu Figure 1 shows the general block diagram of the device family.
4/52
STR73xFxx
Overview
2
Table 2.
Overview
Product overview
Features Flash memory - bytes RAM - bytes Peripheral functions CAN peripherals Operating voltage Operating temperature Packages T=TQFP144 20 x 20 H=LFBGA144 10 x10 STR730FZx 128K 256K 16 K 10 TIM timers, 112 I/Os, 32 wake-up lines, 16 ADC 3 0 STR735FZx 128K 256K 64K STR731FVx 128K 256K 16 K 6 TIM timers, 72 I/Os, 18 wake-up lines, 12 ADC channels 3 4.5 to 5.5 V -40 to +85C/-40 to +105 C T=TQFP100 14x14 0 64K STR736FVx 128K 256K
Package choice: reduced pin-count TQFP100 or feature-rich 144-pin TQFP or LFBGA The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package. The family includes versions with and without CAN. High speed Flash memory The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz. The STR7 embedded Flash memory can be programmed using in-circuit programming or in-application programming. The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years @ 85 C. IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board. The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection:

Sector write protection Flash debug protection (locks JTAG access)
Flexible power management To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI LPWFI, STOP or HALT modes depending on the current system activity in the application.
5/52
Overview Flexible clock control
STR73xFxx
Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2 MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers. Voltage regulators The STR73xF requires an external 4.5 to 5.5 V power supply. There are two internal Voltage Regulators for generating the 1.8 V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode. Low voltage detectors The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8 V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF. Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly.
2.1
On-chip peripherals
CAN interfaces The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736. DMA 4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to peripheral, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity. 16-bit timers (TIM) Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph). PWM modules (PWM) The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor. Timebase timers (TB) The three 16-bit timebase timers with 8-bit prescaler for general purpose time triggering operations. Real-time clock (RTC) The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or
6/52
STR73xFxx
Overview clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator. UARTs The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625 Kbaud. Buffered serial peripheral interfaces (BSPI) Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up to 6 Mb/s in master mode and up to 4.5 Mb/s in slave mode (@36 MHz system clock). I2C interfaces The two I2C Interfaces provide multi-master and slave functions, support normal and fast I2C mode (400 kHz) and 7 or 10-bit addressing modes. A/D converter The 10-bit analog to digital converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is 3 s. Watchdog The 16-bit watchdog timer protects the application against hardware or software failures and ensures recovery by generating a reset. I/O ports Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/output or alternate function. External interrupts and wake-up lines 16 external interrupts lines are available for application use. In addition, up to 32 external Wake-up lines (18 in 100-pin devices) can be used as general purpose interrupts or to wake-up the application from STOP mode.
7/52
Block diagram
STR73xFxx
3
Block diagram
Figure 1.
RSTIN
STR730F/STR735F block diagram
PRCCU/PLL
ARM7TDMI CPU
ARM7 NATIVE BUS
FLASH PROGRAM MEMORY 64/128/256K RAM 16K APB BRIDGE 0 APB BRIDGE 1
M0 M1 TEST
JTDI JTCK JTMS JTRST JTDO V18 VDD VSS VDDA VSSA
JTAG
POWER SUPPLY VREG AHB BRIDGE
AHB BUS
DMA0-3 CLOCK MGT (CMU) XTAL1 XTAL2 OSC RTC WATCHDOG I2C0-1 WAKE-UP/INT (WIU) UART0, 1, 2, 3
APB BUS APB BUS
4 AF 32 AF 8 AF
INTERRUPT CTL (EIC) 16 AF 12 AF 12 AF 6 AF 6 AF 122 ports A/D CONVERTER (ADC) TIMER (TIM) 2-4 BSPI 0-2 CAN 0-2* PWM 0-5 GPIO PORTS 0-6
TIMEBASE TIMER (TB) 0-2 WAKE-UP TIMER (WUT) TIMER (TIM) 0-1 TIMER (TIM) 5-9 8 AF 20 AF
*CAN peripherals not available on STR735F.
AF: alternate function on I/O port pin
8/52
STR73xFxx Figure 2.
RSTIN
Block diagram STR731F/STR736 block diagram
PRCCU/PLL
ARM7TDMI CPU
ARM7 NATIVE BUS
FLASH PROGRAM MEMORY 64/128/256K RAM 16K APB BRIDGE 0 APB BRIDGE 1
M0 M1 TEST
JTDI JTCK JTMS JTRST JTDO V18 VDD VSS VDDA VSSA
JTAG
POWER SUPPLY VREG AHB BRIDGE
AHB BUS
DMA0-3 CLOCK MGT (CMU) XTAL1 XTAL2 OSC RTC WATCHDOG I2C0-1 WAKE-UP/INT (WIU) UART0, 1, 2, 3
APB BUS APB BUS
4 AF 18 AF 8 AF
INTERRUPT CTL (EIC) 12 AF 12 AF 12 AF 6 AF 6 AF 72 ports A/D CONVERTER (ADC) TIMER (TIM) 2-4 BSPI 0-2 CAN 0-2* PWM 0-5 GPIO PORTS 0-6
TIMEBASE TIMER (TB) 0-2 WAKE-UP TIMER (WUT) TIMER (TIM) 0-1 TIMER (TIM) 5 8 AF 4 AF
*CAN peripherals not available on STR736F.
AF: alternate function on I/O port pin
9/52
Block diagram
STR73xFxx
3.1
Related documentation
Available from www.arm.com: ARM7TDMI technical reference manual Available from http://www.st.com: STR73x reference manual (RM0001) STR7 Flash programming reference manual STR73x software library user manual For a list of related application notes refer to http://www.st.com.
10/52
STR73xFxx
Block diagram
3.2
3.2.1
Pin description
STR730F/STR735F (TQFP144)
Figure 3. STR730F/STR735F pin configuration (top view)
P6.15 / WUP9 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.10 / WUP8 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.7 / WUP7 P6.6 / WUP6 P6.5 / WUP5 P6.4 / TDO3 / WUP4 P6.3 / WUP3 P6.2 / RDI3 / WUP2 P6.1 / WUP1 P6.0 / WUP0 VDD VSS V18 P5.15 / INT13 P5.14 / INT12 P5.13 / INT11 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / INT7 P5.8 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 P5.3 / OCMPB9 P5.2 / OCMPA9 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73
OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 VSS VDD OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 ICAPB5 / P0.7 OCMPA6 / P0.8 OCMPB6 / P0.9 OCMPA7 / P0.10 OCMPB7 / P0.11 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 VSS VDD P1.4 P1.5 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13
STR730F/STR735F
P4.14 / SS1 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 P4.10 / ICAPA6 / WUP20 P4.9 / ICAPB6 P4.8 / OCMPA8 P4.7 / SDA1 P4.6 / SCL1 / WUP19 P4.5 / CAN2RX / WUP18 P4.4 / CAN2TX P4.3 / ICAPB8 / WUP27 P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 P4.0 / ICAPA7 / WUP24 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.11 / AIN11 P3.10 / AIN10 P3.9 / AIN9 P3.8 / AIN8 VDDA VSSA P3.7 / AIN7 P3.6 / AIN6
Note: CAN alternate functions not available on STR735F.
WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 PWM3 / P2.5 PWM4 / P2.6 PWM5 / P2.7 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS TDO1 / P2.8 WUP14 / RDI1 / P2.9 WUP16 / P2.10 WUP17 / P2.11 INT14 / P2.12 INT15 / P2.13 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.0 AIN1 / P3.1 AIN2 / P3.2 AIN3 / P3.3 AIN4 / P3.4 AIN5 / P3.5
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
11/52
Block diagram
STR73xFxx
3.2.2
Table 3.
Ball
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12
STR730F/STR735F (LFBGA144)
STR730F/STR735F LFBGA ball connections
Name
P0.0 / OCMPB2 P6.10 / WUP8 P6.9 / TDO0 P6.12 / MOSI0 P6.6 / WUP6 V18 P5.15 / INT13 P5.8 / INT6 P5.2 / OCMPA9 P5.7 / MISO2 P5.6 / MOSI2 P5.11 / TDO2 / INT9 P0.8 / OCMPA6 P0.9 / OCMPB6 P0.10 / OCMPA7 P0.11 / OCMPB7 P0.12 / ICAPA3 P6.5 / WUP5 P6.0 / WUP0 P5.13 / INT11 P4.10 / ICAPA6 / WUP20 P4.9 / ICAPB6 P4.6 / SCL1 / WUP19 P4.5 / WUP18 / CAN2RX 1) P1.4 P1.11 / ICAPA0 / WUP29 P1.12 / ICAPA1 / WUP30 P2.7 / PWM5 VDD P2.9 / RDI1 / WUP14
Ball
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B12 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12
Name
P0.4 / OCMPA5 P0.1 / OCMPA2 P6.15 / WUP9 P6.13 / SCKO / WUP11 P6.7 / WUP7 P6.2 / WUP2 / RDI3 P5.14 / INT12 P5.9 / INT7 P5.3 / OCMPB9 P5.0 / MOSI1 P4.8 / OCMPA8 VDD P0.13 / ICAPB3 P0.14 / OCMPB3 P0.15 / OCMPA3 P1.0 / OCMPA4 P1.1 / OCMPB4 P6.1 / WUP1 P4.4 / CAN2TX1) P4.3 / ICAPB8 / WUP27 P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 JTDI P1.6 / OCMPB1 P1.13 / ICAPB1 / WUP31 P2.1 / CAN1RX1) / WUP13 P2.6 / PWM4 M1 P2.8 / TDO1 P2.13 / INT15 P3.0 / AIN0 P3.4 / AIN4 VDDA VSSA P3.11 / AIN11
Ball
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C12 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Name
P0.5 / OCMPB5 P0.2 / ICAPA2 P0.3 / ICAPB2 P6.14 / SSO P6.8 / RDI0 / WUP10 P6.3 / WUP3 VSS P5.10 / INT8 / RDI2 P5.4 / SS2 P5.1 / MISO1 P4.14 / SS1 P4.7 / SDA1 VSS P1.2 / ICAPB4 P1.3 / ICAPA4 VSS P1.5 P2.11 / WUP17 P4.0 / ICAPA7 / WUP24 VDD VSS JTDO JTCK nJTRST P1.7 / OCMPA1 P1.15 / CAN0TX1) P2.0 / PWM0 P2.3 / PWM1 RSTIN VSS P2.12 / INT14 VBIAS P3.3 / AIN3 P3.5 / AIN5 P3.7 / AIN7 P3.10 / AIN10
Ball
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
Name
VSS VDD P0.6 / ICAPA5 P0.7 /ICAPB5 P6.11 / MISO0 P6.4 / WUP4 /TDO3 VDD P5.12 / INT10 P5.5 / SCK2 / WUP23 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 VDD P1.8 / OCMPA0 / INT0 P1.9 / OCMPB0 / INT1 P1.10 / ICAPB0 / WUP28 XTAL2 P2.10 / WUP16 P2.15 / SDA 0 JTMS VSS VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 P1.14 / CAN0RX 1) / WUP12 P2.4 / PWM2 P2.5 / PWM3 P2.2 / CAN1TX1) M0 VSS XTAL1 TST P3.2 / AIN2 VSS VDD P3.6 / AIN6
B11 P4.15 / SCK1 / WUP22 C11
P2.14 / SCL 0 / WUP15 P3.1 / AIN1 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.9 / AIN9 P3.8 / AIN8
Note: CAN alternate functions not available on STR735F.
12/52
STR73xFxx
Block diagram
3.2.3
STR731F/STR736F (TQFP100)
Figure 4. STR731F/STR736F pin configuration (top view)
P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.6 / WUP6 P6.4 / TDO3 / WUP4 P6.2 / RDI3 / WUP2 P6.0 / WUP0 VDD VSS V18 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / PWM5 / INT7 P5.8 / PWM4 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 /PWM3 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
STR731F/STR736F
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P4.14 / SS1 P4.10 / ICAPB5 / WUP20 P4.7 / SDA1 P4.6 / SCL1 / WUP19 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN11 / INT5 P3.14 / AIN10 / INT4 P3.13 / AIN9 / INT3 P3.12 / AIN8 / INT2 P3.11 / AIN7 P3.10 / AIN6 P3.9 / AIN5 P3.8 / AIN4 VDDA VSSA P3.7 / AIN3 P3.6 / AIN2
Note: CAN alternate functions not available on STR736F.
WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS CAN2RX / TDO1 / P2.8 WUP14 / CAN2TX / RDI1 / P2.9 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.4 AIN1 / P3.5
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
13/52
Block diagram Legend / Abbreviations for Table 4: Type: In/Output level: I = input, O = output, S = supply, HiZ= high impedance, TT= TTL 0.8 V / 2 V with input trigger CT= CMOS 0.3VDD/0.7VDD with input trigger pu/pd = with internal 100 k weak pull-up or pull down OD = open drain (logic level) PP = push-pull
STR73xFxx
Port and control configuration: Input: Output: Interrupts: INTx = external interrupt line WUPx = wake-up interrupt line The reset state (during and just after the reset) of the I/O ports is input floating (Input tristate TTL mode). To avoid excess power consumption, unused I/O ports must be tied to ground. Table 4.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin name
STR73xF pin description
Input interrupt pu/pd Output Capability Main function (after reset) Alternate function
OD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A1 B2 C2 C3 D1 D2 B1 C1 D3 D4 E1 E2 E3 E4 F1 G1 E5 F2
1 2 3 4
P0.0/OCMPB2 P0.1/OCMPA2 P0.2/ICAPA2 P0.3/ICAPB2 VSS VDD
I/O I/O I/O I/O S S I/O I/O I/O I/O I/O I/O
TT TT TT TT
2mA X X Port 0.0 2mA X X Port 0.1 2mA X X Port 0.2 2mA X X Port 0.3 Ground
PP
TIM2: output compare B output TIM2: output compare A output TIM2: input capture A input TIM2: input capture B input
Supply voltage (5 V) TT TT TT TT TT TT TT TT 2mA X X Port 0.4 2mA X X Port 0.5 2mA X X Port 0.6 2mA X X Port 0.7 2mA X X Port 0.8 2mA X X Port 0.9 TIM5: output compare A output TIM5: output compare B output TIM5: input capture A input TIM5: input capture B input TIM6: output compare A output TIM6: output compare B output
5 6 7
P0.4/OCMPA5 P0.5/OCMPB5 P0.6/ICAPA5 P0.7/ICAPB5 P0.8/OCMPA6 P0.9/OCMPB6
P0.10/OCMPA7 I/O P0.11/OCMPB 7 8 9 VDD VSS I/O S S I/O I/O
2mA X X Port 0.10 TIM7: output compare A output 2mA X X Port 0.11 TIM7: output compare B output Supply voltage (5 V) Ground
10 P0.12/ICAPA3 11 P0.13/ICAPB3
TT TT
2mA X X Port 0.12 TIM3: input capture A input 2mA X X Port 0.13 TIM3: input capture B input
14/52
STR73xFxx Table 4.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin name
Block diagram STR73xF pin description
Input interrupt pu/pd Output Capability Main function (after reset) Alternate function
OD
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
F3 F4 F5 F6 G2 G3 G4 H1 J1 G5 K1 L1 H2 H3 H4 J2 J3 K2 M1 L2 L3 K3 M4 L4 M2 M3 K4 J4 M5 L5 K5
12
P0.14/OCMPB 3
I/O
TT TT TT TT TT TT
2mA X X Port 0.14 TIM3: output compare B output 2mA X X Port 0.15 TIM3: output compare A output 2mA X X Port 1.0 2mA X X Port 1.1 2mA X X Port 1.2 2mA X X Port 1.3 Ground Supply voltage (5 V) TIM4: output compare A output TIM4: output compare B output TIM4: input capture B input TIM4: input capture A input
13 P0.15/OCMPA3 I/O 14 P1.0/OCMPA4 15 P1.1/OCMPB4 16 P1.2/ICAPB4 17 P1.3/ICAPA4 VSS VDD P1.4 P1.5 18 P1.6/OCMPB1 19 P1.7/OCMPA1 20 P1.8/OCMPA0 21 P1.9/OCMPB0 22 P1.10/ICAPB0 23 P1.11/ICAPA0 24 P1.12/ICAPA1 25 P1.13/ICAPB1 I/O I/O I/O I/O S S I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT CT TT pd pu pd INT0 INT1
2mA X X Port 1.4 2mA X X Port 1.5 2mA X X Port 1.6 2mA X X Port 1.7 2mA X X Port 1.8 2mA X X Port 1.9 TIM1: output compare B output TIM1: output compare A output TIM0: output compare A output TIM0: output compare B output
WUP28 2mA X X Port 1.10 TIM0: input capture B input WUP29 2mA X X Port 1.11 TIM0: input capture A input WUP30 2mA X X Port 1.12 TIM1: input capture A input WUP31 2mA X X Port 1.13 TIM1: input capture B input WUP12 2mA X X Port 1.14 CAN0: receive data input 2mA X X Port 1.15 CAN0: transmit data output 2mA X X Port 2.0 WUP13 2mA X X Port 2.1 2mA X X Port 2.2 2mA X X Port 2.3 2mA X X Port 2.4 2mA X X Port 2.5 2mA X X Port 2.6 2mA X X Port 2.7 PWM0: PWM output CAN1: receive data input CAN1: transmit data output PWM1: PWM output PWM2: PWM output PWM3: PWM output PWM4: PWM output PWM5: PWM output
26 P1.14/CAN0RX I/O 27 P1.15/CAN0TX 28 P2.0/PWM0 29 P2.1/CAN1RX 30 P2.2/CAN1TX 31 P2.3/PWM1 32 P2.4/PWM2 P2.5/PWM3 P2.6/PWM4 P2.7/PWM5 33 M0 34 RSTIN 35 M1 I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I
PP
BOOT: mode selection 0 input Reset input BOOT: mode selection 1 input
15/52
Block diagram Table 4.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin name
STR73xFxx
STR73xF pin description
Input interrupt pu/pd Output Capability Main function (after reset) Alternate function
OD
50 51 52 53 54
J5 M6 M7 H5 L6
36 VDD 37 VSS 38 XTAL1 39 XTAL2 40 VSS P2.8/TDO1/CA 41 N2RX
S S I O S
PP
Supply voltage (5 V) Ground Oscillator amplifier circuit input and internal clock generator input. Oscillator amplifier circuit output. Ground UART1: transmit data output CAN2: receive data input (TQFP100 only) CAN2: transmit data output (TQFP100 only)
55
K6
I/O
TT
2mA X X Port 2.8
56
J6
42
P2.9/RDI1/CAN I/O 2TX
TT
WUP14 2mA X X Port 2.9
UART1: receive data input
57 58 59 60 61 62 63
H6 G6 L7 K7 J7 H7 M8
P2.10 P2.11 P2.12 P2.13 43 P2.14/SCL0 44 P2.15/SDA0 45 Test
I/O I/O I/O I/O I/O I/O I
TT TT TT TT TT TT pd
WUP16 2mA X X Port 2.10 WUP17 2mA X X Port 2.11 INT14 INT15 2mA X X Port 2.12 2mA X X Port 2.13
WUP15 2mA X X Port 2.14 I2C0: serial clock 2mA X X Port 2.15 I2C0: serial data Reserved pin. Must be tied to ground Internal RC oscillator bias. A 1.3 M external resistor has to be connected to this pin when a 32 kHZ RC oscillator frequency is used. Ground Supply voltage (5 V)
64
L8
46 VBIAS
S
65 M10 47 VSS 66 M11 48 VDD 67 68 69 70 71 72 K8 J8 M9 L9 K9 L10 P3.0/AIN0 P3.1/AIN1 P3.2/AIN2 P3.3/AIN3 49 P3.4/AIN4 50 P3.5/AIN5
S S I/O I/O I/O I/O I/O I/O TT TT TT TT TT TT
2mA X X Port 3.0 2mA X X Port 3.1 2mA X X Port 3.2 2mA X X Port 3.3 2mA X X Port 3.4 2mA X X Port 3.5
ADC: analog input 0 ADC: analog input 1 ADC: analog input 2 ADC: analog input 3 ADC: analog input 4 (AIN0 in TQFP100) ADC: Analog input 5 (AIN1 in TQFP100)
16/52
STR73xFxx Table 4.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin name
Block diagram STR73xF pin description
Input interrupt pu/pd Output Capability Main function (after reset) Alternate function
OD
PP
73 M12 51 P3.6/AIN6 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 L11 K11 K10 J12 J11 L12 K12 J10 J9 H12 H11 H10 H9 52 P3.7/AIN7 53 VSSA 54 VDDA 55 P3.8/AIN8 56 P3.9/AIN9 57 P3.10/AIN10 58 P3.11/AIN11 59 P3.12/AIN12 60 P3.13/AIN13 61 P3.14/AIN14 62 P3.15/AIN15 63 VDD 64 VSS
I/O I/O S S I/O I/O I/O I/O I/O I/O I/O I/O S S I I I I O S S I/O I/O I/O
TT TT
2mA X X Port 3.6 2mA X X Port 3.7
ADC: analog input 6 (AIN2 in TQFP100) ADC: analog input 7 (AIN3 in TQFP100)
Reference ground for A/D converter Reference voltage for A/D converter TT TT TT TT TT TT TT TT INT2 INT3 INT4 INT5 2mA X X Port 3.8 2mA X X Port 3.9 2mA X X Port 3.10 2mA X X Port 3.11 2mA X X Port 3.12 2mA X X Port 3.13 2mA X X Port 3.14 2mA X X Port 3.15 ADC: analog input 8 (AIN4 in TQFP100) ADC: analog input 9 (AIN5 in TQFP100) ADC: analog input 10 (AIN6 in TQFP100) ADC: analog input 11 (AIN7 in TQFP100) ADC: analog input 12 (AIN8 in TQFP100) ADC: analog input 13 (AIN9 in TQFP100) ADC: analog input 14 (AIN10 in TQFP100) ADC: analog input 15 (AIN11 in TQFP100)
Supply voltage (5 V) Ground TT TT TT TT pu pu pu pd 4mA JTAG reset Input JTAG data input JTAG mode selection Input JTAG clock Input JTAG data output. Note: Reset state = HiZ Ground Supply voltage (5 V) TT TT TT WUP24 2mA X X Port 4.0 WUP25 2mA X X Port 4.1 WUP26 2mA X X Port 4.2 TIM7: input capture A input TIM7: input capture B input TIM8: input capture A input
G12 65 JTRST F12 H8 66 JTDI 67 JTMS
G11 68 JTCK G10 69 JTDO G9 G8 G7 F11 F10 70 VSS 71 VDD P4.0/ICAPA7 P4.1/ICAPB7 P4.2/ICAPA8
17/52
Block diagram Table 4.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin name
STR73xFxx
STR73xF pin description
Input interrupt pu/pd Output Capability Main function (after reset) Alternate function
OD
97 98 99
F9 F8 E12
P4.3/ICAPB8 P4.4/CAN2TX P4.5/CAN2RX 72 P4.6/SCL1 73 P4.7/SDA1 P4.8/OCMPA8 P4.9/ICAPB6
I/O I/O I/O I/O I/O I/O I/O
TT TT TT TT TT TT TT
WUP27 2mA X X Port 4.3 2mA X X Port 4.4 WUP18 2mA X X Port 4.5 WUP19 2mA X X Port 4.6 2mA X X Port 4.7 2mA X X Port 4.8 2mA X X Port 4.9
PP
TIM8: input capture B input CAN2: transmit data output CAN2: receive data input I2C1: serial clock I2C1: serial data TIM8: output compare A output TIM6: input capture B input
100 E11 101 C12 102 B12 103 E10
104
E9
74
P4.10/ICAPA6/I I/O CAPB5
TT
TIM5: input TIM6: input capture B capture A input WUP20 2mA X X Port 4.10 input (144-pin pkg (TQFP100 only) only) 2mA X X Port 4.11 TIM8: output compare B output WUP21 2mA X X Port 4.12 TIM9: input capture A input 2mA X X Port 4.13 TIM9: input capture B input 2mA X X Port 4.14 BSPI1: slave select WUP22 2mA X X Port 4.15 BSPI1: serial clock 2mA X X Port 5.0 2mA X X Port 5.1 2mA X X Port 5.2 2mA X X Port 5.3 BSPI1: master output/slave input BSPI1: master input/Slave output TIM9: output compare A output TIM9: output compare B output BSPI2: slave select PWM3: PWM output (TQFP100 only)
105 D12 106 D11 107 D10 108 C11 109 B11 110 B10 111 C10 112 113 A9 B9
P4.11/OCMPB 8 P4.12/ICAPA9 P4.13/ICAPB9 75 P4.14/SS1 76 P4.15/SCK1 77 P5.0/MOSI1 78 P5.1/MISO1 P5.2/OCMPA9 P5.3/OCMPB9
I/O I/O I/O I/O I/O I/O I/O I/O I/O
TT TT TT TT TT TT TT TT TT
114
C9
P5.4/SS2/PWM 79 I/O 3 80 P5.5/SCK2 81 P5.6/MOSI2 82 P5.7/MISO2 83 P5.8/PWM4 I/O I/O I/O I/O
TT
2mA X X Port 5.4
115
D9
TT TT TT TT
WUP23 2mA X X Port 5.5 2mA X X Port 5.6 2mA X X Port 5.7 INT6 2mA X X Port 5.8
BSPI2: serial clock BSPI2: master output/slave input BSPI2: master input/slave output PWM4: PWM output (TQFP100 only)
116 A11 117 A10 118 A8
18/52
STR73xFxx Table 4.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin name
Block diagram STR73xF pin description
Input interrupt pu/pd Output Capability Main function (after reset) Alternate function
OD
PP
119 120
B8 C8
84 P5.9/PWM5 85 P5.10/RDI2 86 P5.11/TDO2 87 P5.12 P5.13 P5.14 P5.15
I/O I/O I/O I/O I/O I/O I/O
TT TT TT TT TT TT TT
INT7 INT8 INT9 INT10 INT11 INT12 INT13
2mA X X Port 5.9
PWM5: PWM output (TQFP100 only)
2mA X X Port 5.10 UART2: receive data input 2mA X X Port 5.11 UART2: transmit data output 2mA X X Port 5.12 2mA X X Port 5.13 2mA X X Port 5.14 2mA X X Port 5.15 1.8 V decoupling pin: a decoupling capacitor (recommended value: 100 nF) must be connected between this pin and nearest VSS pin. Ground Supply voltage (5 V)
121 A12 122 123 124 125 D8 E8 B7 A7
126
A6
88 V18
S
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
C7 D7 E7 F7 B6 C6 D6 E6 A5 B5 C5 A3 A2 D5 A4 B4 C4 B3
89 VSS 90 VDD 91 P6.0 P6.1 92 P6.2/RDI3 P6.3 93 P6.4/TDO3 P6.5 94 P6.6 P6.7 95 P6.8/RDI0 96 P6.9/TDO0 P6.10 97 P6.11/MISO0 98 P6.12/MOSI0 99 P6.13/SCK0 100 P6.14/SS0 P6.15
S S I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT WUP0 8mA X X Port 6.0 WUP1 2mA X X Port 6.1 WUP2 2mA X X Port 6.2 WUP3 2mA X X Port 6.3 WUP4 2mA X X Port 6.4 WUP5 2mA X X Port 6.5 WUP6 2mA X X Port 6.6 WUP7 2mA X X Port 6.7 WUP10 2mA X X Port 6.8 2mA X X Port 6.9 WUP8 2mA X X Port 6.10 2mA X X Port 6.11 2mA X X Port 6.12
UART3: receive data input
UART3: transmit data output
UART0: receive data input UART0: transmit data output
BSPI0: master input/slave output BSPI0: master output/slave input
WUP11 2mA X X Port 6.13 BSPI0: serial clock 2mA X X Port 6.14 BSPI0: slave select WUP9 2mA X X Port 6.15
19/52
Block diagram
STR73xFxx
3.3
Memory mapping
Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature Most reserved memory spaces (gray shaded areas in Figure 5) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter "prefetch abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_0010). It is up to the application software to manage these abort exceptions. Figure 5.
0xFFFF FFFF 0xFFFF 8000
Memory map
APB memory space 32 Kbytes
0xFFFF FFFF 0xFFFF FC00 0xFFFF FBFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF F800 F7FF F600 F400 F3FF
Addressable memory space 4 Gbytes
APB TO ARM7 BRIDGE
32K
EIC ADC CMU RTC DMA 0-3 TIM 4
1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K
7
0xE000 0000 0xDFFF FFFF
Flash memory space 64K/128/256 Kbytes
0x8010 DFFF
0xFFFF F000 0xFFFF EFFF 0xFFFF EC00 0xFFFF EBFF
6
0xC000 0000 0xBFFF FFFF
0x8010 C000 0x8010 0017 0x8010 0000
System Memory 8K Flash registers
TIM 3
0xFFFF E800 0xFFFF E7FF
20B
TIM 2
0xFFFF E400 0xFFFF E3FF 0xFFFF E000 0xFFFF DFFF 0xFFFF DC00 0xFFFF DBFF
BSPI 2 BSPI 1 BSPI 0 GP I/O 0-6 PWM 0-5 CAN 2(4) CAN 1
(4)
5
0xA000 3FFF 0xA000 0000 0x9FFF FFFF RAM
0xFFFF D800 0xFFFF D7FF 0xFFFF D400 0xFFFF D3FF
16K
0xFFFF D000 0xFFFF CFFF 0xFFFF CC00 0xFFFF CBFF
4
0x8010 0017 0x8000 0000 0x7FFF FFFF Flash
0xFFFF C800 0xFFFF C7FF 0xFFFF C400 0xFFFF C3FF
CAN 0(4) APB BRIDGE 1 REGS reserved WAKEUP reserved TIM 5-9 TIM 1 TIM 0 WAKEUPTIM WDG UART 3 UART 1 UART 2 UART 0 TB 0-2
64K/128K/256K
0xFFFF C000 0xFFFF BFFF 0xFFFF BC00 0xFFFF BBFF
3
0x6000 03FF 0x6000 0000 0x5FFF FFFF PRCCU
0xFFFF B800 0xFFFF B7FF 0xFFFF B400 0xFFFF B3FF
1K
0x8003 FFFF
0xFFFF B000 0xFFFF AFFF
B0F7(2)
64K
0xFFFF AC00 0xFFFF ABFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF A800 A7FF A600 A400 A3FF A200 A000 9FFF 9E00 9C00 9BFF
2
0x4000 003F 0x4000 0000 0x3FFF FFFF CONFIG. REGS
0x8003 0000 0x8002 FFFF
64B
0x8002 0000 0x8001 FFFF
B0F6(2)
64K
1
0x2000 000F 0x2000 0000 0x1FFF FFFF NATIVE ARBITER
B0F5(3)
64K
0xFFFF 9800 0xFFFF 97FF 0xFFFF 9400 0xFFFF 93FF
reserved reserved reserved I2C 1 I2C 0
16B
0x8001 0000 0x8000 FFFF
0xFFFF 9000 0xFFFF 8FFF
B0F4
0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 8000 7FFF 6000 5FFF 4000 3FFF 2000 1FFF 0000
32K 8K 8K 8K 8K
0xFFFF 8C00 0xFFFF 8BFF 0xFFFF 8800 0xFFFF 87FF 0xFFFF 8400 0xFFFF 83FF 0xFFFF 8000
0
0x0010 0017 0x0000 0000 Flash (1)
B0F3 B0F2 B0F1 B0TF
64K/128K/256K
APB BRIDGE 0 REGS
(1) Flash aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes) (2) Only available in STR73xZ2/V2 (3) Only available in STR73xZ2/V2 and STR73xZ1/V1 (4) Only available in STR730/STR731
access to gray shaded area will return an ABORT Drawing not to scale
20/52
STR73xFxx
Electrical parameters
4
4.1
Electrical parameters
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
4.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA=25 C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3).
4.1.2
Typical values
Unless otherwise specified, typical data are based on TA=25 C and VDD=5 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2).
4.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.
4.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 6.
4.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 7. Figure 6. Pin loading conditions Figure 7. Pin input voltage
STR7 PIN
STR7 PIN
L=50pF
VIN
21/52
Electrical parameters
STR73xFxx
4.2
Absolute maximum ratings
Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 5.
Symbol VDD - VSS VSSA VDDA- VSSA VIN |VDDx| |VSSX - VSS| VESD(HBM) VESD(MM)
Voltage characteristics
Ratings External 5 V Supply voltage Reference ground for A/D converter Reference voltage for A/D converter Input voltage on any pin Variations between different 5 V power pins Variations between all the different ground pins Electrostatic discharge voltage (Human Body Model) Electrostatic discharge voltage (Machine Model) Min -0.3 VSS -0.3 -0.3 Max 6.0 VSS VDD+0.3 VDD+0.3 0.3 mV 0.3 Unit
V V
V
see : Absolute maximum ratings (electrical sensitivity) on page 36
Table 6.
Symbol IVDD IVSS IIO
Current characteristics
Ratings Total current into VDD power lines (source) 1) Total current out of VSS ground lines (sink) 1) Output current sunk by any I/O and control pin Output current source by any I/O and control pin Injected current on any other pin 4) &5) Total injected current (sum of all I/O and control pins) 4) Max. 100 100 10 mA 10 10 75 Unit
IINJ(PIN) 2) & 3) IINJ(PIN) 2)
1. All 5 V power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external 5 V supply 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN22/52
STR73xFxx Table 7. Thermal characteristics
Ratings Storage temperature range
Electrical parameters
Symbol TSTG TJ
Value -55 to +150
Unit C
Maximum junction temperature (see Section 5.2: Thermal characteristics on page 48)
23/52
Electrical parameters
STR73xFxx
4.3
Operating conditions
Subject to general operating conditions for VDD, and TA. Table 8.
Symbol fMCLK
General operating conditions
Parameter Internal CPU and system clock frequency Standard Operating Voltage Operating analog reference voltage with respect to ground Ambient temperature range 6 partnumber suffix 7 partnumber suffix Conditions Accessing SRAM or Flash (zero wait state Flash access up to 36 MHz) Min 0 Max 36 Unit MHz
VDD
4.5
5.5
V
VDDA TA
4.5 -40 -40
VDD+0.1 85 105
V
C
Table 9.
Symbol tVDD
Operating conditions at power-up / power-down
Parameter VDD rise time rate Conditions Subject to general operating conditions for TA. Min Typ 20 Max Unit
-
-
ms/V
24/52
STR73xFxx
Electrical parameters
4.3.1
Supply current characteristics
The current consumption is measured as described in Figure 6 and Figure 7.
Total current consumption
The MCU is placed under the following conditions:

All I/O pins in input mode with a static value at VDD or VSS (no load) All peripherals are disabled except if explicitly mentioned.
Subject to general operating conditions for VDD, and TA. Table 10.
Symbol
Total current consumption
Parameter Conditions Formula, fMCLK in MHz, RAM execution RUN mode3) fMCLK = 36 MHz, RAM execution fMCLK = 36 MHz, Flash execution fOSC = 4 MHz, fMCLK= fOSC/16 = 250 kHz Main voltage regulator ON, LP voltage regulator = 2 mA, RTC and WDG on, other modules off. fRC = high frequency (CMU_RCCTL= 0x8), fMCLK= fRC /16, LP voltage regulator = 2 mA, other modules off. fOSC = 4 MHz, RC oscillator on fRC = high frequency (CMU_RCCTL= 0x0) LP voltage regulator = 6 mA, RTC and WUT ON, other modules off. Internal wake-up possible. STOP mode fRC = high frequency (CMU_RCCTL= 0xF), LP voltage regulator = 2mA. WUT ON, other modules off. Internal wake-up possible. LP voltage regulator = 2 mA, WIU on, Other modules off, external wake-up. HALT mode LP voltage regulator = 2 mA. Typ 1) 7 + 1.9 fMCLK 76 86 Max 2) Unit mA mA mA
WFI mode
6.7
8
mA
LPWFI mode IDD
220
350
A
500
700
A 150 220
50 50
140 140 A
1. Typical data are based on TA=25 C, VDD=5 V 2. Data based on characterization results, tested in production at VDD max. and TA = 25 C. 3. I/O in static configuration (not toggling). RUN mode is almost independent of temperature. On the contrary RUN mode current is highly dependent on the application. The IDDRUN value can be significantly reduced by the application in the following ways: switch-off unused peripherals (default), reduce peripheral frequency through internal prescaler, fetch the most frequently-used functions from RAM and use low power mode when possible.
25/52
Electrical parameters
STR73xFxx
Figure 8.
300 250 200
STOP IDD vs. VDD
Figure 9.
300
HALT IDD vs. VDD
250
Idd STOP (A)
TA=-45C 150 100 50 0 3.5 4 4.5 5 Vdd (V) 5.5 6 6.5 TA=25C TA=85C TA=105C
Idd HALT (A)
200 TA=-45C 150 TA=25C TA=85C TA=105C 100
50
0 3.5 4 4.5 5 Vdd (V) 5.5 6 6.5
Figure 10. WFI IDD vs. VDD
8.0
Figure 11. LPWFI IDD vs. VDD
500
7.5
450 400
Idd Wfi (mA)
7.0
TA=-45C TA=25C TA=85C
Idd LPWFI (A)
350 300 250 200 150 100 50 0 TA=-45C TA=25C TA=85C TA=105C
6.5
TA=105C
6.0
5.5 3.5 4 4.5 5 Vdd (V) 5.5 6 6.5
3.5
4
4.5
5 Vdd (V)
5.5
6
6.5
26/52
STR73xFxx
Electrical parameters
Typical application current consumption
Table 11. Typical consumption in Run mode at 25C and 85C
Conditions Code executing in RAM fMCLK (MHz) fADC (MHz) Typical IDD (mA) 10 10 20 36 10 Code executing in Flash 10 20 36 9 32 48 9 29 42 22 VDD= 5.5 V, RC oscillator off, PLL on, RTC enabled, 1 Timer (TIM) running, and ADC running in scan mode. 20
Table 12.
Mode RUN
Typical consumption in Run and low power modes at 25C
Conditions All peripherals on, RAM execution 24 MHz 56 mA 33 mA 31 mA 11 mA 8 mA 3 mA 2.5 mA 528 A 378 A 83 A 64 A 44 A 44 A Main voltage regulator on, Flash on, EIC on, WIU on, GPIOs on. PLL off, main voltage regulator on CLOCK2/16, main voltage regulator on 36 MHz 24 MHz 4 MHz 250 kHz 250 kHz 29 kHz 250 kHz fMCLK 36 MHz Typical IDD 76 mA
WFI
SLOW
CLOCK2/16, main voltage regulator off RC oscillator running in low frequency, main crystal oscillator off, main voltage regulator off
LPWFI
CLOCK2/16, main voltage regulator off, LP voltage regulator = 2 mA, Flash in power down mode. Main voltage regulator off, RTC on, RC oscillator off, LP voltage regulator = 6 mA Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 6 mA
STOP Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 4 mA Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 2 mA HALT RTC off, LP voltage regulator = 2 mA
27/52
Electrical parameters
STR73xFxx
On-chip peripherals
Table 13.
Symbol IDD(RC) IDD(TIM)
Peripheral current consumption at TA= 25C
Parameter RC (backup oscillator) supply current Low frequency TIM timer supply current 1) 60 350 1.1 850 430 5 2.88 2.95 fMCLK=36 MHz 150 250 240 370 2.5 180 570 300 460 A A mA A A mA mA mA A A A A mA A A A A Conditions High frequency Typ 120 Unit A
IDD(BSPI) BSPI supply current 1) IDD(UART) UART supply current 1) IDD(I2C) I2C supply current 1)
IDD(ADC) ADC supply current when converting 2) IDD(EIC) EIC supply current
IDD(CAN) CAN supply current 1) IDD(GPIO) GPIO supply current IDD(TB) TB supply current
IDD(PWM) PWM supply current IDD(RTC) RTC supply current
IDD(DMA) DMA supply current IDD(ARB) Native arbiter supply current
IDD(AHB) AHB arbiter supply current IDD(WUT) WUT supply current IDD(WIU) WIU supply current
1. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset, not clocked and the on-chip peripheral when clocked and not kept under reset. This measurement does not include the pad toggling consumption. 2. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions.
28/52
STR73xFxx
Electrical parameters
4.3.2
Clock and timing characteristics
Crystal / ceramic resonator oscillator
The STR73xF can operate with a crystal oscillator or resonator clock source. Figure 12 describes a simple model of the internal oscillator driver as well as example of connection for an oscillator or a resonator.
Figure 12. Crystal oscillator and resonator
STR73x
VDD
I
RF
XTAL1
XTAL2
STR73x
XTAL1 XTAL2 XTAL1
STR73x
XTAL2 Resonator
Crystal
RS CL CL
Note:
1 2
XTAL2 must not be used to directly drive external circuits. For test or boot purpose, XTAL2 can be used as an high impedance input pin to provide an external clock to the device. XTAL1 should be grounded, and XTAL2 connected to a wave signal generator providing a 0 to VDD signal. Directly driving XTAL2 may results in deteriorated jitter and duty cycle.
29/52
Electrical parameters Main oscillator characteristics VDD = 5 V 10%, TA = -40 C to TAmax, unless otherwise specified. Table 14.
Symbol fOSC gm VOSC1) VAV1)
STR73xFxx
Main oscillator characteristics
Value Parameter Oscillator frequency Oscillator transconductance Oscillation amplitude Oscillator operating point fOSC = 4 MHz, TA= 25o C fOSC = 8 MHz, TA= 25o C Sine wave middle, TA= 25o C External crystal, VDD = 5.5 V, fOSC = 4 MHz, TA=-40o C External crystal, VDD = 5.0 V, fOSC = 4 MHz, TA=25o C External crystal, VDD = 5.5 V, fOSC = 6 MHz, TA=-40o C External crystal, VDD = 5.0 V, fOSC = 6 MHz, TA=25o C External crystal, VDD = 5.5 V, fOSC = 8 MHz, TA=-40o C External crystal, VDD = 5.0 V, fOSC = 8 MHz, TA= 25o C Conditions Min 4 1.5 2.4 1.0.77 5.5 3.3 2.7 12 8 7 V
Unit Typ Max 8 4.2 V MHz mA/V
ms ms ms ms ms ms
tSTUP
1)
Oscillator start-up time
30/52
STR73xFxx Table 14.
Symbol
Electrical parameters Main oscillator characteristics (continued)
Value Parameter Conditions Min C13) = C2 4)= 10 pF fOSC = 4 MHz Cp2) = 10 pF C1 = C2 = 20 pF C1 = C2 = 30 pF C1 = C2 = 40 pF C1 = C2 = 10 pF fOSC = 5 MHz Cp = 10 pF C1 = C2 = 20 pF C1 = C2 = 30 pF C1 = C2 = 40 pF C1 = C2 = 10 pF RF1) Feedback resistor fOSC = 6 MHz Cp = 10 pF C1 = C2 = 20 pF C1 = C2 = 30 pF C1 = C2 = 40 pF C1 = C2 = 10 pF fOSC = 7 MHz Cp = 10 pF C1 = C2 = 20 pF C1 = C2 = 30 pF C1 = C2 = 40 pF C1 = C2 = 10 pF fOSC = 8 MHz Cp = 10 pF C1 = C2 = 20 pF C1 = C2 = 30 pF C1 = C2 = 40 pF 150 490 490 380 160 415 340 260 160 325 250 180 160 260 185 135 155 210 145 100 Typ 555 1035 1030 850 470 800 735 580 415 640 550 420 375 525 420 315 340 435 335 245 Max Unit
1. Min and max values are guaranteed by characterization, not tested in production. 2. CP represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and XTAL2 track. 3. C1 represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance). 4. C2 represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance).
31/52
Electrical parameters
STR73xFxx
RC/backup oscillator characteristics
VDD = 5V 10%, TA = -40C to TAmax, unless otherwise specified.
Table 15.
Symbol
RC oscillator characteristics
Value Parameter Conditions Min High frequency mode 1) Typ 2.35 29 3 2.3 35 30 10 23 2.35 Max MHz kHz MHz MHz kHz kHz % % s Unit
fRC
RC frequency
Low frequency mode1) CMU_RCCTL = 0x0
fRCHF
RC high frequency CMU_RCCTL = 0xF CMU_RCCTL = 0x0 RC low frequency CMU_RCCTL = 0xF RC high frequency stability RC low frequency stability RC start-up time Fixed CMU_RCCTL Fixed CMU_RCCTL Stable VDD, fRC = 2.35 MHz, TA = 25oC
fRCLF fRCHFS2) fRCLFS2) tRCSTUP
1) CMU_RCCTL = 0x8 2) RC frequency shift versus average value (%)
32/52
STR73xFxx
Electrical parameters
PLL electrical characteristics
VDD = 5 V 10%, TA = -40 C to TAmax, unless otherwise specified
Table 16.
Symbol
PLL characteristics
Value Parameter Conditions Min Typ Max 3.0 5.0 20 x fPLLIN 12 x fPLLIN 28 x fPLLIN 16 x fPLLIN fPLLOUT/DX 120 240 240 480 100 300 1.5 36 MHz FREF_RANGE = `0' FREF_RANGE = `1' MX = "00" MX = "01" MX = "10" MX = "11" DX = 1..7 FREF_RANGE = `0', MX0 = '1' FREF_RANGE = `0', MX0 = '0' FREF_RANGE = `1', MX0 = '1' FREF_RANGE = `1', MX0 = '0' Stable oscillator (fPLLIN = 4 MHz), stable VDD fPLLIN = 4 MHz (pulse generator) 1.5 3.0 Unit
fPLLIN(1)
PLL reference clock
fPLLOUT
PLL output clock
MHz
fMCLK fFREE (2)
System clock PLL free running frequency
MHz
kHz
tLOCK(3) tPKJIT
PLL lock time PLL jitter (pk to pk)
s ns
1. fPLLIN is obtained from fOSC directly or through an optional divider by 2. 2. Typical data are based on TA=25C, VDD=5V 3. Max value is guaranteed by characterization, not tested in production.
Table 17.
Symbol tWUHALT tWUSTOP
Low-power mode wake-up timing
Parameter Wake-up from HALT mode RC high frequency in STOP mode Wake-up from STOP mode RC low frequency in STOP mode Main voltage regulator on RC oscillator off fOSC = 4 MHz, fMCLK= fOSC/16 RAM or FLASH execution 27 s 234 s Conditions Typ 200 180 Unit s s
tWULPWFI 1) Wake-up from LPWFI mode
Main voltage regulator on RC oscillator = high frequency Flash execution Main voltage regulator on RC oscillator = low frequency Flash execution 3.6 ms 46 s
1. Flash memory programmed to enter Power Down mode during LPWFI.
33/52
Electrical parameters
STR73xFxx
4.3.3
Memory characteristics
Flash memory
Table 18.
Symbol tWP tDWP tBP64 tBP128 tBP256 tSE8 tSE32 tSE64 tRPD3) tPSL3) tESL3) tESR3) tSP3) tFPW3) NEND tRET
Flash memory characteristics
Value Parameter Word program (32-bit) Double word program(64-bit) Bank program (64 K) Bank program (128 K) Bank program (256 K) Sector erase (8 K) Sector erase (32 K) Sector erase (64 K) Recovery from power-down Program suspend latency Erase suspend latency Erase suspend rate Set protection First word program Endurance Data retention TA = 85 C 10 20 Min. time from erase resume to next erase suspend 20 40 1 Double word program Double word program Double word program Not preprogrammed Preprogrammed 2) Not preprogrammed Preprogrammed2) Not preprogrammed preprogrammed 2) Test Conditions Min Typ Max1) 35 64 0.5 1 2 0.6 0.5 1.1 0.8 1.7 1.3 80 150 1.25 2.5 4.9 0.9 0.8 2 1.8 3.7 3.3 20 10 30 20 170 s s s s s s s s s s s ms s ms kcycles Years Unit
1. TA = -45 C after 0 cycles, Guaranteed by characterization, not tested in production. 2. All bits programmed to 0. 3. Guaranteed by design, not tested in production.
34/52
STR73xFxx
Electrical parameters
4.3.4
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations: The software flowchart must include the management of runaway conditions such as:

Corrupted program counter Unexpected reset Critical data corruption (control registers...)
Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 19.
Symbol VFESD
EMS data
Parameter Voltage limits to be applied on any I/O pin to induce a functional disturbance Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance Conditions VDD=5 V, TA=+25 C, fMCLK=36 MHz conforms to IEC 1000-4-2 VDD=5 V, TA=+25 C, fMCLK=36 MHz conforms to IEC 1000-4-4 Level/ Class 4A
VEFTB
4A
35/52
Electrical parameters
STR73xFxx
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Table 20. EMI data
Monitored frequency band 0.1 MHz to 30 MHz SEMI Peak level VDD=5.0V, TA=+25C, All packages 30 MHz to 130 MHz 130 MHz to 1 GHz SAE EMI Level Max vs. [fOSC4M/fMCLK] 6/36 MHz 8/8 MHz 23 37 20 4 30 34 7 3.5 dBV Unit
Symbol
Parameter
Conditions
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and machine model. This test conforms to the JESD22-A114A/A115A standard. Table 21.
Symbol VESD(HBM) VESD(MM)
ESD Absolute Maximum ratings
Ratings Electrostatic discharge voltage (human body model) Electrostatic discharge voltage (machine model) Electrostatic discharge voltage (charge device model) TA=+25 C Conditions Maximum value 1) 2000 200 750 on corner pins, 500 on others Unit
V
VESD(CDM)
Notes: 1. Data based on characterization results, not tested in production.
Static and dynamic latch-up
LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each
36/52
STR73xFxx
Electrical parameters sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
DLU: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181. Electrical sensitivities
Parameter TA=+25C TA=+85C TA=+105C VDD= 5.5 V, fOSC4M = 4 MHz, fMCLK = 32 MHz, TA = +25 C Conditions Class 1) A A A A
Table 22.
Symbol
LU
Static latch-up class
DLU
Dynamic latch-up class
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).
37/52
Electrical parameters
STR73xFxx
4.3.5
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. Table 23.
Symbol VIL VIH IINJ(PIN)
I/O static characteristics
Parameter Input low level voltage 1) TTL ports Input high level voltage 1) Injected current on any I/O pin 2.0 10 75 VSSVINVDD Floating input mode VIN=VSS VIN=VDD 55 55 200 120 120 5 220 220 1 mA mA A A k k pF Conditions Min Typ Max 0.8 V Unit
IINJ(PIN) Total injected current (sum of all I/O and control pins) 2) Ilkg IS RPU RPD CIO Input leakage current 3) Static current consumption 4) Weak pull-up equivalent resistor5) Weak pull-down equivalent resistor5) I/O pin capacitance
1. Data based on characterization results, not tested in production. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>V33 while a negative injection is induced by VIN38/52
STR73xFxx
Electrical parameters
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified. Table 24.
I/O Type
Output driving current
Symbol VOL 1) Parameter Output low level voltage for an I/O pin when 8 pins are sunk at same time Conditions IIO=+2 mA VDD-0.8 0.4 VDD-0.8 0.4 VDD-0.8 V Min Max 0.4 Unit
Standard VOH 2) Med. Current (JTDO) High Current P6.0 VOL 1) VOH
2)
Output high level voltage for an I/O pin I =-2 mA when 4 pins are sourced at same time IO Output low level voltage for an I/O pin IIO=+6 mA
Output high level voltage for an I/O pin IIO=-6 mA Output low level voltage for an I/O pin IIO=+8 mA
VOL 1) VOH 2)
Output high level voltage for an I/O pin IIO=-8 mA
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Figure 13. VOH standard ports vs IOH @ VDD 5V Figure 14. VOL standard ports vs IOL @ VDD 5 V TA -45 C
5.10 0.25
5.00
0.20
Ta -45C Ta 25C Ta 90C Ta 110C
VOH(V) at VDD= 5 V
4.90
VOL(V) at VDD= 5 V
2 3 4
0.15
4.80
4.70
Ta -45C Ta 25C Ta 90C Ta 110C
0.10
4.60
0.05
4.50 0 1
0.00 0 1 2 3 4
Ioh (mA)
Iol (mA)
39/52
Electrical parameters
STR73xFxx
Figure 15. VOH JTDO pin vs IOL @ VDD 5 V
5.10
Figure 16. VOL JTDO pin vs IOL @ VDD 5 V
0.14 0.12
5.00
0.10
VOH(V) at VDD= 5 V
4.90
VOL(V) at VDD= 5 V
0.08
4.80
0.06
4.70
4.60
Ta -45C Ta 25C Ta 90C Ta 110C
0.04
0.02
Ta -45C Ta 25C Ta 90C Ta 110C
4.50 0 1 2 3 4 5 6
0.00 0 1.2 2.4 3.6 4.8 6
Ioh (mA)
Iol (mA)
Figure 17. VOH P6.0 pin vs IOL @ VDD 5 V
5.10
Figure 18. VOL P6.0 pin vs IOL @ VDD 5 V
0.18 0.16
5.00 0.14
VOH(V) at VDD= 5 V
4.90
VOL(V) at VDD= 5 V
0.12 0.10 0.08 0.06 0.04 0.02 0.00
4.80
4.70
4.60
Ta -45C Ta 25C Ta 90C Ta 110C
Ta -45C Ta 25C Ta 90C Ta 110C
4.50 0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
Ioh (mA)
Iol (mA)
40/52
STR73xFxx
Electrical parameters
NRSTIN pin
The NRSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as RPU (see : General characteristics on page 38) Subject to general operating conditions for VDD and TA unless otherwise specified. Table 25.
Symbol VIL(NRSTIN) VIH(NRSTIN) Vhys(NRSTIN) VF(RSTINn) VNF(RSTINn) VRP(RSTINn)
Reset pin characteristics
Parameter NRSTIN Input low level voltage 1) NRSTIN Input high level voltage 1) NRSTIN Schmitt trigger voltage hysteresis 2) NRSTIN Input filtered pulse3) NRSTIN Input not filtered pulse3) NRSTIN removal after Power-up3) 2 100 0.7 VDD 800 500 mV ns s s Conditions Min Typ 1) Max 0.3 VDD Unit
V
1. Data based on characterization results, not tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. 3. Data guaranteed by design, not tested in production.
Figure 19. Recommended NRSTIN pin protection1)
VDD
RPU
EXTERNAL RESET CIRCUIT 0.01F
Filter
INTERNAL RESET
STR7X
Required
1. The RPU pull-up equivalent resistor is based on a resistive transistor. 2. The reset network protects the device against parasitic resets. 3. The user must ensure that the level on the NRSTIN pin can go below the VIL(NRSTIN) max. level specified in Table 25. Otherwise the reset will not be taken into account internally.
41/52
Electrical parameters Figure 20. NRSTIN RPU vs. VDD
250
STR73xFxx
200
Rpu (kOhm)
150
25C -45C 110C
100
50
0 3 3.5 4 Vdd (v) 4.5 5 5.5
42/52
STR73xFxx
Electrical parameters
4.3.6
10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMCLK, and TA unless otherwise specified. Table 26.
Symbol fADC VAIN Ilkg Conversion voltage range 2) VINADC characteristics
Parameter Conditions Min 0.4 VSSA 5 Typ 1) Max 10 VDDA 6 Unit MHz V A
CADC tCAL2) tS3)
3.5
pF s 1/fADC s s 1/fADC mA A
IADC
Running mode Power-down mode
Normal mode
1. Unless otherwise specified, typical data are based on TA=25C and VDDA-VSS=5.0V. They are given only as design guidelines and are not tested. 2. Calibration is recommended once after each power-up. 3. During the sample time the input capacitance CAIN (6.8 max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming.
43/52
Electrical parameters Table 27.
Symbol |ET| |EO| |EG| |ED| |EL|
STR73xFxx ADC accuracy with fMCLK = 20 MHz, fADC=10 MHz, RAIN < 10 k RAIN, VDDA=5 V. This assumes that the ADC is calibrated2)
Parameter Total unadjusted error 1) Offset error 1) Gain error 1) Differential linearity error1) Integral linearity error 1) Conditions Typ 1.0 0.15 0.97 0.7 0.76 Max 2.0 1.0 1.1 1.0 1.5 LSB Unit
1. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. The effect of negative injection current on robust pins is specified in Section 4.3.5. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 4.3.5 does not affect the ADC accuracy. 2. Calibration is needed once after each power-up.
Figure 21. ADC accuracy characteristics
EG 1023 1022 1021 1LSB IDEAL V -V DDA SSA = ---------------------------------------(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
1024
(2) ET 7 6 5 4 3 2 1 0 1 VSSA 2 3 4 1 LSBIDEAL EO EL ED (3) (1)
ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
5
6
7
1021 1022 1023 1024 VDDA
V
Figure 22. Typical application with ADC
VDD VT 0.6V RAIN VAIN CAIN VT 0.6V IL 1A AINx
STR73X
2.3k(max)
10-Bit A/D conversion CADC 3.5pF
44/52
STR73xFxx
Electrical parameters
Analog power supply and reference pins
The VDDA and VSSA pins are the analog power supply of the A/D converter cell. They act as the high and low reference voltages for the conversion. Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: General PCB design guidelines).
General PCB design guidelines
To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB. Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 F and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 F capacitor close to the power source (see Figure 23). The analog and digital power supplies should be connected in a star network. Do not use a resistor, as VDDA is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy. Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.
Software filtering of spurious conversion results
For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques. Figure 23. Power supply filtering
1 to 10 F
STR7 DIGITAL NOISE FILTERING
STR73x 0.1 F VSS
VDD
5V
POWER SUPPLY SOURCE EXTERNAL NOISE FILTERING
0.1 F
VDDA
VSSA
45/52
Package characteristics
STR73xFxx
5
5.1
Package characteristics
Package mechanical data
Figure 24. 100-pin thin quad flat package
D D1 A A2
Dim. A A1 A2 b C D D1 E E1 e h L L1
mm Min 0.05 1.35 0.17 0.09 16.00 14.00 16.00 14.00 0.50 0 0.45 3.5 0.60 1.00 100 7 0 1.40 0.22 Typ Max 1.60 0.15 0.0020 Min
inches(1) Typ Max 0.0630 0.0059
A1
1.45 0.0531 0.0551 0.0571 0.27 0.0067 0.0087 0.0106 0.20 0.0035 0.6299 0.5512 0.6299 0.5512 0.0197 3.5 0.0394 Number of Pins 7 0.75 0.0177 0.0236 0.0295 0.0079
b
e E1 E
L1 L h
c
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 25. 144-pin thin quad flat package
Dim.
D D1 D3 A1 108 109 73 72 0.10mm .004 in. b Seating Plane E A A2
mm Min 0.05 1.35 0.17 0.09 1.40 0.22 Typ Max 1.60 0.15 0.0020 Min
inches(1) Typ Max 0.0630 0.0059
A A1 A2 b c D D1 D3 E E1
c
1.45 0.0531 0.0551 0.0571 0.27 0.0067 0.0087 0.0106 0.20 0.0035 0.0079
b E3 E1
21.80 22.00 22.20 0.8583 0.8661 0.8740 19.80 20.00 20.20 0.7795 0.7874 0.7953 17.50 0.6890 21.80 22.00 22.20 0.8583 0.8661 0.8740 19.80 20.00 20.20 0.7795 0.7874 0.7953 17.50 0.50 0 0.45 3.5 0.60 1.00 144 Values in inches are converted from mm and rounded to 4 decimal digits. 7 0 0.6890 0.0197 3.5 0.0394 Number of Pins 7 0.75 0.0177 0.0236 0.0295
144 1 e
37 36
E3 e K
L1
L h
L L1 N 1.
46/52
STR73xFxx
Package characteristics Figure 26. 144-ball low profile fine pitch ball grid array package
mm Min 1.21 0.21 1.085 0.35 0.40 8.80 8.80 0.80 0.60 0.10 0.15 0.08 Number of Pins N
1
Dim. A A1 A2 b D D1 E E1 e F ddd eee fff
inches1) Max Min 0.0083 0.0427 0.45 0.0138 0.0157 0.0177 0.3465 0.3465 0.0315 0.0236 0.0039 0.0059 0.0031 144 Typ Max 0.0669 1.70 0.0476
Typ
9.85 10.00 10.15 0.3878 0.3937 0.3996 9.85 10.00 10.15 0.3878 0.3937 0.3996
Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 27. Recommended PCB design rules (0.80/0.75mm pitch BGA)
0.37 mm 0.52 mm typ. (depends on solder Dsm mask registration tolerance Solder paste 0.37 mm aperture diameter - Non solder mask defined pads are recommended - 4 to 6 mils screen print
Dpad Dsm
Dpad
47/52
Package characteristics
STR73xFxx
5.2
Thermal characteristics
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x JA) Where: - - - - - TA is the ambient temperature in C, JA is the package junction-to-ambient thermal resistance, in C/W, PD is the sum of PINT and PI/O (PD = PINT + PI/O), PINT is the product of IDD and VDD, expressed in Watts. This is the chip internal power, PI/O represents the power dissipation on input and output pins; user determined. (1)
Most of the time for the applications PI/O < PINT and may be neglected. On the other hand, PI/O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273C) Therefore (solving equations 1 and 2): K = PD x (TA + 273C) + JA x PD2 Where: - K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA Thermal characteristics
Description Package LFBGA144 JA Thermal resistance junction-ambient TQFP144 TQFP100 Value (typical) 50 40 40 C/W Unit
(2)
(3)
Table 28.
Symbol
48/52
STR73xFxx
Order codes
6
Table 29.
Order codes
Order codes
Flash Kbytes 128 256 128 256 128 256 128 256 64 128 256 6 12 0 18 72 64 128 256 128 256 128 256 128 256 128 256 64 128 256 6 12 0 18 72 64 128 256 TQFP100 14x14 TQFP100 14x14 3 TQFP144 20x20 3 LFBGA144 10x10 10 16 32 112 TQFP144 20x20 0 LFBGA144 10x10 16 1 -40 to +105C TQFP100 14x14 TQFP100 14x14 3 Package TQFP144 20x20 3 LFBGA144 10x10 10 16 32 112 TQFP144 20x20 0 LFBGA144 10x10 16 1 -40 to +85C TIM 6x PWM CAN A/D Wake-up I/O RAM lines ports Kbytes timers module periph chan. Temp. range
Partnumber STR730FZ1T6 STR730FZ2T6 STR730FZ1H6 STR730FZ2H6 STR735FZ1T6 STR735FZ2T6 STR735FZ1H6 STR735FZ2H6 STR731FV0T6 STR731FV1T6 STR731FV2T6 STR736FV0T6 STR736FV1T6 STR736FV2T6 STR730FZ1T7 STR730FZ2T7 STR730FZ1H7 STR730FZ2H7 STR735FZ1T7 STR735FZ2T7 STR735FZ1H7 STR735FZ2H7 STR731FV0T7 STR731FV1T7 STR731FV2T7 STR736FV0T7 STR736FV1T7 STR736FV2T7
49/52
Known limitations
STR73xFxx
7
7.1
Known limitations
Low power wait for interrupt mode
When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash goes into low power mode or power down mode, depending on the setting of the PWD bit in the Flash Control Register 0 (default is `0', Low Power mode). This default mode can create excessive voltage conditions on the transistor gates and may affect the long term behavior of the Low Power mode circuitry. Workaround There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly suggested to configure the Flash to enter power down mode (bit PWD = `1').
7.2
PLL free running mode at high temperature
When the STR73x device is operated and an ambient temperature (TA) of more than 55 C and the main system clock (fMCLK) is sourced by the PLL in free running mode, the device may not work properly. Workaround At high temperature (more than 55 C), it is recommended to use the internal RC oscillator as a backup clock source rather than the PLL free running mode.
50/52
STR73xFxx
Revision history
8
Revision history
Table 30.
Date 19-Sep-2005 02-Nov-2005
Document revision history
Revision 1 2 First release Removed Table 8 power consumption in LP modes Updated PLL frequency in Section 1.1 and Table 12 Section 3.4: Preliminary power consumption data updated Section 3.5: DC electrical characteristics updated Section 7: Known limitations added Section 4: Electrical parameters updated Section 7: Known limitations updated Added temperature range -40C to 85C in Section 6: Order codes Changed Flash data retention to 20 years at 85C in Table 18 on page 34. Changed Table 24: Output driving current on page 39 Added Figure 14: VOL standard ports vs IOL @ VDD 5 V thru Figure 18: VOL P6.0 pin vs IOL @ VDD 5 V on page 40. Added Figure 20: NRSTIN RPU vs. VDD Inch values rounded to 4 decimal digits in Section 5.1: Package mechanical data Modified BSPI speed in Section 2.1: On-chip peripherals Description of changes
08-Mar-2006
3
04-Jun-2006
4
19-Jun-2006
5
08-Sep-2006
6
08-Jun-2008
7
51/52
STR73xFxx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
52/52


▲Up To Search▲   

 
Price & Availability of STR736FV0T6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X